Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(12): 108379, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38025769

RESUMO

Down syndrome (DS) results from trisomy of human chromosome 21 (HSA21), and DS research has been conducted by the use of mouse models. We previously generated a humanized mouse model of DS, TcMAC21, which carries the long arm of HSA21. These mice exhibit learning and memory deficits, and may reproduce neurodevelopmental alterations observed in humans with DS. Here, we performed histologic studies of the TcMAC21 forebrain from embryonic to adult stages. The TcMAC21 neocortex showed reduced proliferation of neural progenitors and delayed neurogenesis. These abnormalities were associated with a smaller number of projection neurons and interneurons. Further, (phospho-)proteomic analysis of adult TcMAC21 cortex revealed alterations in the phosphorylation levels of a series of synaptic proteins. The TcMAC21 mouse model shows similar brain development abnormalities as DS, and will be a valuable model to investigate prenatal and postnatal causes of intellectual disability in humans with DS.

2.
Cell Rep ; 28(2): 325-331.e4, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31291570

RESUMO

CRISPR/Cas-based technologies have revolutionized genetic approaches to addressing a wide range of neurobiological questions. The ability of CRISPR/Cas to introduce mutations into target genes allows us to perform in vivo loss-of-function experiments without generating genetically engineered mice. However, the lack of a reliable method to determine genotypes of individual CRISPR/Cas-transfected cells has made it impossible to unambiguously identify the genetic cause of their phenotypes in vivo. Here, we report a strategy for single-cell genotyping in CRISPR/Cas-transfected neurons that were phenotypically characterized in vivo. We show that re-sectioning of cortical slices and subsequent laser microdissection allow us to isolate individual CRISPR/Cas-transfected neurons. Sequencing of PCR products containing a CRISPR/Cas-targeted genomic region in single reference neurons provided genotypes that completely correspond with those deduced from their target protein expression and phenotypes. Thus, our study establishes a powerful strategy to determine the causality between genotypes and phenotypes in CRISPR/Cas-transfected neurons.


Assuntos
Sistemas CRISPR-Cas/genética , Neurônios/metabolismo , Animais , Genótipo , Camundongos , Transfecção
3.
Neurosci Res ; 138: 19-25, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30227164

RESUMO

Down syndrome (DS) also known as Trisomy 21 is a genetic disorder that occurs in ∼1 in 800 live births. The disorder is caused by the triplication of all or part of human chromosome 21 and therefore, is thought to arise from the increased dosage of genes found within chromosome 21. The manifestations of the disease include among others physical growth delays and intellectual disability. A prominent anatomical feature of DS is the microcephaly that results from altered brain development. Recent studies using mouse models of DS have shed new light on DYRK1A (dual-specificity tyrosine-phosphorylation-regulated kinase 1A), a gene located on human chromosome 21 that plays a critical role in neocortical development. The present review summarizes effects of the increased dosage of DYRK1A on the proliferative, neurogenic and astrogliogenic potentials of cortical neural progenitor cells, and relates these findings to the clinical manifestations of the disease.


Assuntos
Síndrome de Down/fisiopatologia , Microcefalia/fisiopatologia , Neocórtex/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/fisiologia , Animais , Síndrome de Down/complicações , Humanos , Camundongos , Microcefalia/complicações
4.
Development ; 145(17)2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30217809

RESUMO

Newborn neurons in the developing neocortex undergo radial migration, a process that is coupled with their precise passage from multipolar to bipolar shape. The cell-extrinsic signals that govern this transition are, however, poorly understood. Here, we find that lysophosphatidic acid (LPA) signaling contributes to the establishment of a bipolar shape in mouse migratory neurons through LPA receptor 4 (LPA4). LPA4 is robustly expressed in migratory neurons. LPA4-depleted neurons show impaired multipolar-to-bipolar transition and become arrested in their migration. Further, LPA4-mediated LPA signaling promotes formation of the pia-directed process in primary neurons overlaid on neocortical slices. In addition, LPA4 depletion is coupled with altered actin organization as well as with destabilization of the F-actin-binding protein filamin A (FlnA). Finally, overexpression of FlnA rescues the morphology and migration defects of LPA4-depleted neurons. Thus, the LPA-LPA4 axis regulates bipolar morphogenesis and radial migration of newborn cortical neurons via remodeling of the actin cytoskeleton.


Assuntos
Movimento Celular/genética , Polaridade Celular/genética , Lisofosfolipídeos/metabolismo , Neocórtex/citologia , Neurônios/citologia , Receptores Purinérgicos/metabolismo , Células 3T3 , Animais , Linhagem Celular , Filaminas/metabolismo , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos ICR , Neurogênese/fisiologia , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Receptores Purinérgicos/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais
5.
Yakugaku Zasshi ; 137(7): 795-800, 2017.
Artigo em Japonês | MEDLINE | ID: mdl-28674289

RESUMO

Down syndrome (DS) is caused by trisomy for human chromosome 21. Individuals with DS commonly exhibit mental retardation, which is associated with abnormal brain development. In the neocortex of the DS brain, the density of neurons is markedly reduced, whereas that of astrocytes is increased. Similar to abnormalities seen in DS brains, mouse models of DS show deficits in brain development, and neural progenitor cells that give rise to neurons and glia show dysregulation in their differentiation. These suggest that the dysregulation of progenitor fate choices contributes to alterations in the numbers of neurons and astrocytes in the DS brain. Nevertheless, the molecular basis underlying these defects remains largely unknown. We showed that the overexpression of two human chromosome 21 genes, DYRK1A and DSCR1, contributes to suppressed neuronal differentiation of progenitors in the Ts1Cje mouse model of DS. In addition, the effect of DYRK1A and DSCR1 overexpression on neuronal differentiation is mediated by excessive attenuation of the transcription factor NFATc. Additionally, we demonstrated that an increased dosage of DYRK1A contributes to elevated potential of Ts1Cje progenitors to differentiate into astrocytes and enhanced astrogliogenesis in the Ts1Cje neocortex. Further, we linked the increased dosage of DYRK1A to dysregulation of STAT, a transcription factor critical for astrogliogenesis. Together, our studies identify critical pathways responsible for the proper differentiation of neural progenitors into neurons and astrocytes, with direct implications for the anomalies in brain development observed in DS.


Assuntos
Encéfalo/citologia , Encéfalo/patologia , Diferenciação Celular/efeitos dos fármacos , Síndrome de Down/genética , Síndrome de Down/patologia , Células-Tronco Neurais/citologia , Neurogênese/genética , Animais , Astrócitos , Cromossomos Humanos Par 21/genética , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/fisiologia , Fatores de Transcrição NFATC , Neuroglia , Neurônios , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/fisiologia , Fatores de Transcrição STAT
6.
Sci Rep ; 6: 25180, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27142930

RESUMO

The ability of radial glial progenitors (RGPs) to generate cortical neurons is determined by local extracellular factors and signaling pathways intrinsic to RGPs. Here we find that GPR157, an orphan G protein-coupled receptor, localizes to RGPs' primary cilia exposed to the cerebrospinal fluid (CSF). GPR157 couples with Gq-class of the heterotrimeric G-proteins and signals through IP3-mediated Ca(2+) cascade. Activation of GPR157-Gq signaling enhances neuronal differentiation of RGPs whereas interfering with GPR157-Gq-IP3 cascade in RGPs suppresses neurogenesis. We also detect the presence of putative ligand(s) for GPR157 in the CSF, and demonstrate the increased ability of the CSF to activate GPR157 at neurogenic phase. Thus, GPR157-Gq signaling at the primary cilia of RGPs is activated by the CSF and contributes to neurogenesis.


Assuntos
Sinalização do Cálcio , Diferenciação Celular , Células Ependimogliais/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Neurônios/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/fisiologia , Animais , Líquido Cefalorraquidiano/metabolismo , Cílios/química , Camundongos Endogâmicos ICR , Neurogênese , Células-Tronco/química
7.
EMBO Rep ; 16(11): 1548-62, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26373433

RESUMO

Down syndrome (DS) arises from triplication of genes on human chromosome 21 and is associated with anomalies in brain development such as reduced production of neurons and increased generation of astrocytes. Here, we show that differentiation of cortical progenitor cells into astrocytes is promoted by DYRK1A, a Ser/Thr kinase encoded on human chromosome 21. In the Ts1Cje mouse model of DS, increased dosage of DYRK1A augments the propensity of progenitors to differentiate into astrocytes. This tendency is associated with enhanced astrogliogenesis in the developing neocortex. We also find that overexpression of DYRK1A upregulates the activity of the astrogliogenic transcription factor STAT in wild-type progenitors. Ts1Cje progenitors exhibit elevated STAT activity, and depletion of DYRK1A in these cells reverses the deregulation of STAT. In sum, our findings indicate that potentiation of the DYRK1A-STAT pathway in progenitors contributes to aberrant astrogliogenesis in DS.


Assuntos
Astrócitos/citologia , Síndrome de Down/fisiopatologia , Neocórtex/fisiopatologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Animais , Astrócitos/fisiologia , Diferenciação Celular , Síndrome de Down/genética , Síndrome de Down/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , Neocórtex/patologia , Células-Tronco/fisiologia
8.
Mol Cell Biol ; 34(24): 4464-73, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25288642

RESUMO

The circadian clock is finely regulated by posttranslational modifications of clock components. Mouse CRY2, a critical player in the mammalian clock, is phosphorylated at Ser557 for proteasome-mediated degradation, but its in vivo role in circadian organization was not revealed. Here, we generated CRY2(S557A) mutant mice, in which Ser557 phosphorylation is specifically abolished. The mutation lengthened free-running periods of the behavioral rhythms and PER2::LUC bioluminescence rhythms of cultured liver. In livers from mutant mice, the nuclear CRY2 level was elevated, with enhanced PER2 nuclear occupancy and suppression of E-box-regulated genes. Thus, Ser557 phosphorylation-dependent regulation of CRY2 is essential for proper clock oscillation in vivo.


Assuntos
Criptocromos/genética , Criptocromos/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Serina/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Relógios Circadianos , Ritmo Circadiano , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Fosforilação
9.
J Biol Chem ; 289(3): 1629-38, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24280221

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of motor neurons. Here we show that the basic leucine zipper transcription factor NFIL3 (also called E4BP4) confers neuroprotection in models of ALS. NFIL3 is up-regulated in primary neurons challenged with neurotoxic insults and in a mouse model of ALS. Overexpression of NFIL3 attenuates excitotoxic neuronal damage and protects neurons against neurodegeneration in a cell-based ALS model. Conversely, reduction of NFIL3 exacerbates neuronal demise in adverse conditions. Transgenic neuronal expression of NFIL3 in ALS mice delays disease onset and attenuates motor axon and neuron degeneration. These results suggest that NFIL3 plays a neuroprotective role in neurons and constitutes a potential therapeutic target for neurodegeneration.


Assuntos
Esclerose Amiotrófica Lateral/metabolismo , Axônios/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Neurônios Motores/metabolismo , Fármacos Neuroprotetores/metabolismo , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/patologia , Animais , Axônios/patologia , Fatores de Transcrição de Zíper de Leucina Básica/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/patologia
10.
Genes Dev ; 27(24): 2708-21, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24352425

RESUMO

Down's syndrome (DS), a major genetic cause of mental retardation, arises from triplication of genes on human chromosome 21. Here we show that DYRK1A (dual-specificity tyrosine-phosphorylated and -regulated kinase 1A) and DSCR1 (DS critical region 1), two genes lying within human chromosome 21 and encoding for a serine/threonine kinase and calcineurin regulator, respectively, are expressed in neural progenitors in the mouse developing neocortex. Increasing the dosage of both proteins in neural progenitors leads to a delay in neuronal differentiation, resulting ultimately in alteration of their laminar fate. This defect is mediated by the cooperative actions of DYRK1A and DSCR1 in suppressing the activity of the transcription factor NFATc. In Ts1Cje mice, a DS mouse model, dysregulation of NFATc in conjunction with increased levels of DYRK1A and DSCR1 was observed. Furthermore, counteracting the dysregulated pathway ameliorates the delayed neuronal differentiation observed in Ts1Cje mice. In sum, our findings suggest that dosage of DYRK1A and DSCR1 is critical for proper neurogenesis through NFATc and provide a potential mechanism to explain the neurodevelopmental defects in DS.


Assuntos
Diferenciação Celular/genética , Dosagem de Genes/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Musculares , Neocórtex/citologia , Neurogênese/genética , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Células-Tronco/citologia , Animais , Proteínas de Ligação ao Cálcio , Modelos Animais de Doenças , Síndrome de Down/genética , Síndrome de Down/patologia , Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Fatores de Transcrição NFATC/metabolismo , Neocórtex/embriologia , Plasmídeos/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo
11.
Development ; 140(21): 4335-46, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24089469

RESUMO

Neural progenitor cells in the developing brain give rise to neurons and glia. Multiple extrinsic signalling molecules and their cognate membrane receptors have been identified to control neural progenitor fate. However, a role for G protein-coupled receptors in cell fate decisions in the brain remains largely putative. Here we show that GPRC5B, which encodes an orphan G protein-coupled receptor, is present in the ventricular surface of cortical progenitors in the mouse developing neocortex and is required for their neuronal differentiation. GPRC5B-depleted progenitors fail to adopt a neuronal fate and ultimately become astrocytes. Furthermore, GPRC5B-mediated signalling is associated with the proper regulation of ß-catenin signalling, a pathway crucial for progenitor fate decision. Our study uncovers G protein-coupled receptor signalling in the neuronal fate determination of cortical progenitors.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neocórtex/embriologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/genética , Primers do DNA/genética , Eletroporação , Regulação da Expressão Gênica no Desenvolvimento/genética , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Neocórtex/metabolismo , Neurogênese/genética , Plasmídeos/genética
12.
PLoS One ; 8(6): e66021, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776596

RESUMO

The maternal care that offspring receive from their mothers early in life influences the offspring's development of emotional behavior in adulthood. Here we found that offspring reared by circadian clock-impaired mice show elevated anxiety-related behavior. Clock mutant mice harboring a mutation in Clock, a key component of the molecular circadian clock, display altered daily patterns of nursing behavior that is fragmented during the light period, instead of long bouts of nursing behavior in wild-type mice. Adult wild-type offspring fostered by Clock mutant mice exhibit increased anxiety-related behavior. This is coupled with reduced levels of brain serotonin at postnatal day 14, whose homeostasis during the early postnatal period is critical for normal emotional behavior in adulthood. Together, disruption of the circadian clock in mothers has an adverse impact on establishing normal anxiety levels in offspring, which may increase their risk of developing anxiety disorders.


Assuntos
Ansiedade/etiologia , Proteínas CLOCK/genética , Comportamento Materno/fisiologia , Animais , Encéfalo/metabolismo , Proteínas CLOCK/fisiologia , Feminino , Camundongos , Mutação/genética , Serotonina/metabolismo
13.
Proc Natl Acad Sci U S A ; 108(12): 4864-9, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21383147

RESUMO

The circadian clock is phase-delayed or -advanced by light when given at early or late subjective night, respectively. Despite the importance of the time-of-day-dependent phase responses to light, the underlying molecular mechanism is poorly understood. Here, we performed a comprehensive analysis of light-inducible genes in the chicken pineal gland, which consists of light-sensitive clock cells representing a prototype of the clock system. Light stimulated expression of 62 genes and 40 ESTs by >2.5-fold, among which genes responsive to the heat shock and endoplasmic reticulum stress as well as their regulatory transcription factors heat shock factor (HSF)1, HSF2, and X-box-binding protein 1 (XBP1) were strongly activated when a light pulse was given at late subjective night. In contrast, the light pulse at early subjective night caused prominent induction of E4bp4, a key regulator in the phase-delaying mechanism of the pineal clock, along with activation of a large group of cholesterol biosynthetic genes that are targets of sterol regulatory element-binding protein (SREBP) transcription factor. We found that the light pulse stimulated proteolytic formation of active SREBP-1 that, in turn, transactivated E4bp4 expression, linking SREBP with the light-input pathway of the pineal clock. As an output of light activation of cholesterol biosynthetic genes, we found light-stimulated pineal production of a neurosteroid, 7α-hydroxypregnenolone, demonstrating a unique endocrine function of the pineal gland. Intracerebroventricular injection of 7α-hydroxypregnenolone activated locomotor activities of chicks. Our study on the genome-wide gene expression analysis revealed time-of-day-dependent light activation of signaling pathways and provided molecular connection between gene expression and behavior through neurosteroid release from the pineal gland.


Assuntos
Ritmo Circadiano/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas de Choque Térmico/metabolismo , Luz , Transdução de Sinais/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/metabolismo , 17-alfa-Hidroxipregnenolona/análogos & derivados , 17-alfa-Hidroxipregnenolona/farmacologia , Animais , Sequência de Bases , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Comportamento Animal/efeitos da radiação , Galinhas , Colesterol/biossíntese , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/efeitos da radiação , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Estudo de Associação Genômica Ampla , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Locomoção/efeitos da radiação , Masculino , Dados de Sequência Molecular , Fatores de Transcrição de Fator Regulador X , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação
14.
Mol Cell Biol ; 30(7): 1757-68, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20123978

RESUMO

Circadian molecular oscillation is generated by a transcription/translation-based feedback loop in which CRY proteins play critical roles as potent inhibitors for E-box-dependent clock gene expression. Although CRY2 undergoes rhythmic phosphorylation in its C-terminal tail, structurally distinct from the CRY1 tail, little is understood about how protein kinase(s) controls the CRY2-specific phosphorylation and contributes to the molecular clockwork. Here we found that Ser557 in the C-terminal tail of CRY2 is phosphorylated by DYRK1A as a priming kinase for subsequent GSK-3beta (glycogen synthase kinase 3beta)-mediated phosphorylation of Ser553, which leads to proteasomal degradation of CRY2. In the mouse liver, DYRK1A kinase activity toward Ser557 of CRY2 showed circadian variation, with its peak in the accumulating phase of CRY2 protein. Knockdown of Dyrk1a caused abnormal accumulation of cytosolic CRY2, advancing the timing of a nuclear increase of CRY2, and shortened the period length of the cellular circadian rhythm. Expression of an S557A/S553A mutant of CRY2 phenocopied the effect of Dyrk1a knockdown in terms of the circadian period length of the cellular clock. DYRK1A is a novel clock component cooperating with GSK-3beta and governs the Ser557 phosphorylation-triggered degradation of CRY2.


Assuntos
Ritmo Circadiano/fisiologia , Criptocromos/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Relógios Biológicos/fisiologia , Células Cultivadas , Criptocromos/genética , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina/metabolismo
15.
Chronobiol Int ; 23(1-2): 129-34, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16687286

RESUMO

Cryptochrome1 and 2 play a critical role in the molecular oscillations of the circadian clocks of central and peripheral tissues in mammals. Mouse Cryptochrome2 (mCRY2) is phosphorylated at Ser557 in the liver, in which the Ser557-phosphorylated form accumulates during the night in parallel with mCRY2 protein. Phosphorylation of mCRY2 at Ser557 allows subsequent phosphorylation at Ser553 by glycogen synthase kinase-3beta (GSK-3beta), resulting in efficient degradation of mCRY2 by a proteasome pathway. In the present study, we found that mCRY2 is phosphorylated at Ser557 also in the region of the mouse brain containing the suprachiasmatic nucleus (SCN), the central circadian clock tissue. Daily fluctuation of the Ser557-phosphorylation level in the SCN region suggests an important role of sequential phosphorylation of Ser557 and Ser553 in the rhythmic degradation of mCRY2 in both central and peripheral clocks of mice.


Assuntos
Flavoproteínas/química , Serina/química , Núcleo Supraquiasmático/metabolismo , Animais , Células COS , Chlorocebus aethiops , Ritmo Circadiano , Criptocromos , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Hipotálamo/metabolismo , Imuno-Histoquímica , Fígado/metabolismo , Camundongos , Oscilometria , Fosforilação , Complexo de Endopeptidases do Proteassoma/química
16.
J Biol Chem ; 280(36): 31714-21, 2005 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-15980066

RESUMO

Cryptochrome 1 and 2 act as essential components of the central and peripheral circadian clocks for generation of circadian rhythms in mammals. Here we show that mouse cryptochrome 2 (mCRY2) is phosphorylated at Ser-557 in the liver, a well characterized peripheral clock tissue. The Ser-557-phosphorylated form accumulates in the liver during the night in parallel with mCRY2 protein, and the phosphorylated form reaches its maximal level at late night, preceding the peak-time of the protein abundance by approximately 4 h in both light-dark cycle and constant dark conditions. The Ser-557-phosphorylated form of mCRY2 is localized in the nucleus, whereas mCRY2 protein is located in both the cytoplasm and nucleus. Importantly, phosphorylation of mCRY2 at Ser-557 allows subsequent phosphorylation at Ser-553 by glycogen synthase kinase-3beta (GSK-3beta), resulting in efficient degradation of mCRY2 by a proteasome pathway. As assessed by phosphorylation of GSK-3beta at Ser-9, which negatively regulates the kinase activity, GSK-3beta exhibits a circadian rhythm in its activity with a peak from late night to early morning when Ser-557 of mCRY2 is highly phosphorylated. Altogether, the present study demonstrates an important role of sequential phosphorylation at Ser-557/Ser-553 for destabilization of mCRY2 and illustrates a model that the circadian regulation of mCRY2 phosphorylation contributes to rhythmic degradation of mCRY2 protein.


Assuntos
Flavoproteínas/metabolismo , Quinase 3 da Glicogênio Sintase/fisiologia , Serina/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Células COS , Chlorocebus aethiops , Ritmo Circadiano/fisiologia , Criptocromos , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Fígado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...